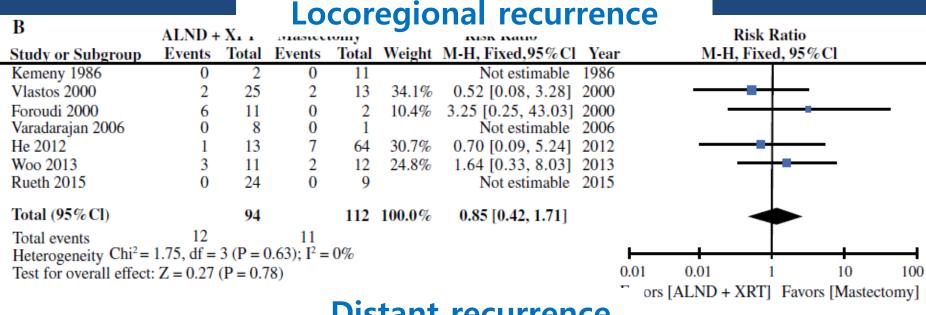
Good responders: Who are they?

Apr 25th 2019
Hematology and Oncology
CHA Bundang Medical Center
Yong Wha Moon, MD., PhD.

Introduction

Current practice after NAC in EBC

Patients who respond well to NAC (neoadjuvant chemotherapy) is often to proceed with the same breast and axillary procedures to patients who respond less

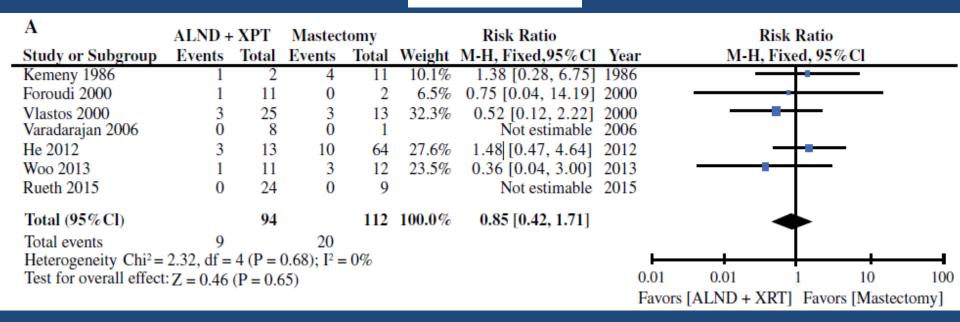

Is this idea realistic?

Selective elimination of breast cancer surgery in exceptional responders

History of organ sparing in oncology area

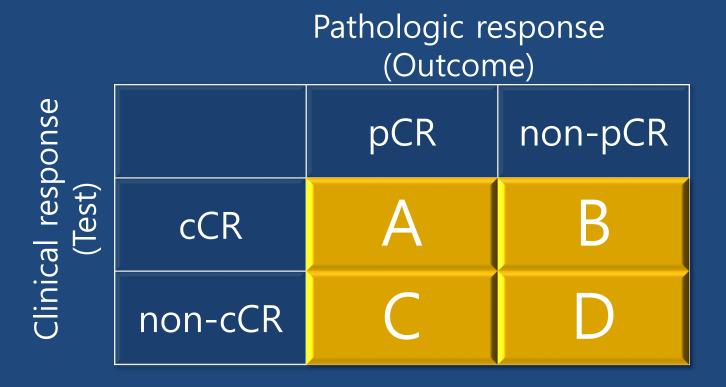
- ✓ Laryngeal ca
- ✓ Anal ca
- ✓ Cervix ca

AXLN mets with occult breast cancer


Distant recurrence

C					Carre	. recurren	CE			
C	ALND +	XPT	Mastec	tomy		KISK KAUO		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed,95% Cl	Year	M-H, Fixe	ed, 95 % Cl	
Kemeny 1986	0	2	0	11		Not estimable	1986			
Vlastos 2000	3	25	4	13	42.7%	0.39 [0.10, 1.49]	2000		 -	
Varadarajan 2006	0	8	0	1		Not estimable	2006			
He 2012	2	13	6	64	16.4%	1.64 [0.37, 7.25]	2012		 	
Woo 2013	0	11	4	12	35.1%	1.12 [0.01, 2.01]	2013		 	
Rueth 2015	1	24	0	9	5.8%	1.20 [0.05, 27.05]	2015		-	
Total (95% Cl)		83		110	100.0%	0.55 [0.24, 1.26]		•	-	
Total events	6		14							
Heterogeneity Chi ² =				: 19%					 	┥│
Test for overall effect	Z = 1.41	(P = 0.1)	l 6)				0.	01 0.01 1	10	100
							Fa	ovors [ALND + XRT]	Favors [Mastectom	y]

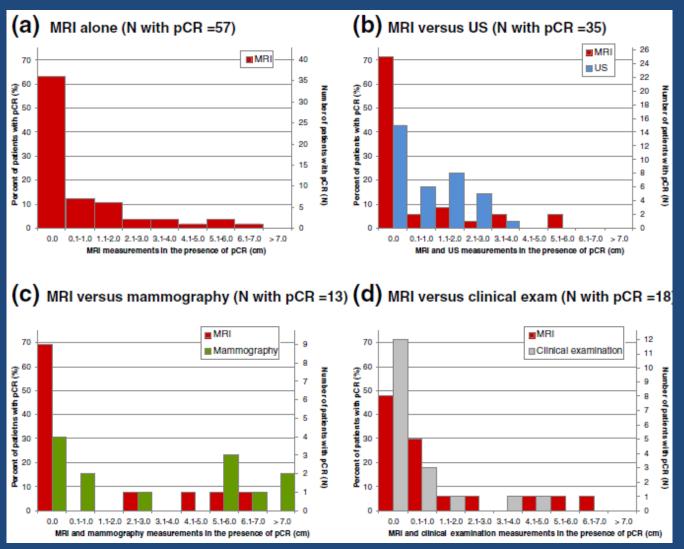
(Macedo, Ann Surg Oncol 2016)


AXLN mets with occult breast cancer

Absence of breast tumor on preop imagings saves mastectomy

Terminology to describe test performance

Sensitivity=
$$\frac{A}{A+C}$$


$$PPV = \frac{A}{A+B}$$

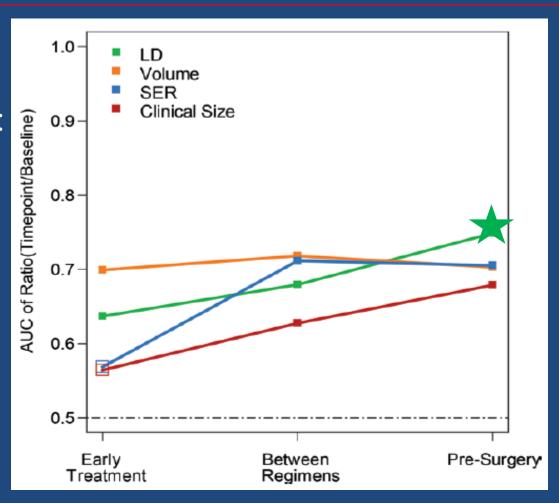
$$NPV = \frac{C}{C+D}$$

MRI to predict pCR

MRI vs other methods to predict pCR

IPD meta-analysis (8 studies; N=300)

ACRIN6657/I-SPY Trial: MRI to predict NAC response


ACRIN: American College of Radiology Imaging Network

Stage II/III May 2002~March 2006 N=216

AUC for prediction of pCR

Ex) 0.7 indicates: TPR(sensitivity) is 0.7

Volume measurement shows higher predictability than LD measurement. However, it is just around 0.7

ORIGINAL ARTICLE

The role of magnetic resonance imaging in assessing residual disease and pathologic complete response in breast cancer patients receiving neoadjuvant chemotherapy: a systematic review

M. B. I. Lobbes • R. Prevos • M. Smidt •

V. C. G. Tjan-Heijnen · M. van Goethem · R. Schipper ·

R. G. Beets-Tan · J. E. Wildberger

35 eligible studies

Sensitivity (%)	25~100%
Specificity (%)	50~97%
PPV (%)	47~73%
NPV (%)	71~100%

Correlation of tumor size on MRI and pathology

Author	Correlation coefficient	P-value		
Partridge et al.	0.89	< 0.001		
Cheung et al.	0.982	< 0.001		
Martincich et al.	0.72	< 0.001		
Segara et al.	0.749	< 0.0001		
Kim et al.	0.645	< 0.001		
Moon et al.	0.584	NA		
Wright et al.	0.49	NA		
Park et al.	0.667	NA		
Nakahara et al.	0.21	NS		
Wang et al.	0.866	< 0.01		
Dongfeng et al.	0.698	< 0.001		
Fangberget et al.	0.87	< 0.001		
Guarneri et al.	0.53	NS		
Shin et al.a	0.97	NA		
Chen et al.	0.30	0.03		
Kim et al.	0.619	< 0.0001		
Shin et al.b	0.781	NA		

Median correlation coefficient 0.698

Tri-modality imaging may augment accuracy for pCR prediction

cCR: Sum of score ≤ 5

NPV	0.87
PPV	0.95
Sensitivity	0.87
Specificity	0.93

Imaging Modality	Imaging Parameter	r Score		
	0	1	2	3
MR				
Early peak signal intensity		≤80	>80	
Internal enhancement pattern		Homogeneous	Heterogeneous	
Kinetic pattern		Type I	Type II	Type III
US				
Mass size	Resolution of mass	≤20 mm	>20 mm	
Mammography				
Residual mass	Absent	Present		
Malignant calcifications	Absent	Present		

PET to predict pCR

Functional imaging

- Yeh showed palpation, mammo, US, and MRI had 19%, 26%, 35%, and 71% accuracy for prediction of pCR.
- Anatomic changes in tumor presentation are not reliable predictors of final pathologic state.
- Functional measurement of tumors (CE-MRI, MRS, PET) have shown substantial improvement over conventional anatomic imaging.

FDG-PET results to predict pCR: a review (2013)

		,					
Author (ref)	n	Cycles/	Criteria	Sens (%)	Spec (%)	NPV (%)	PPV (%)
Bassa et al. ²⁵	15	1-2 cycles	Visual	75	100	NA	NA
Kim et al. ²⁶	50	4 cycles	$\mathbf{79\%}\ \Delta \mathbf{SUV}_{\mathrm{max}}$	85	83	83	85
Smith et al. ²⁷	30	1 cycle	$\mathbf{20\%}\ \Delta \mathbf{SUV}_{\mathrm{max}}$	90	74	94	64
Schelling et al. ²⁸	22	1 cycle 2 cycles	55% ΔSUV_{max} 55% ΔSUV_{max}	100 83	85 94	NA NA	NA NA
Rousseau et al.31	64	2 cycles	$60\%~\Delta \text{SUV}_{\text{max}}$	89	96	87	97
Berriolo-Riedinger et al. ³²	47	1 cycle	60% $\Delta SUV_{max-BSA-G}$	75	92	94	75
McDermott et al. ³³	96	1cycle Mid-NCT End-NCT	$24\%\Delta SUV_{max}$ $58\%\Delta SUV_{max}$ $64\%\Delta SUV_{max}$	100 100 100	53 68 71	NA NA NA	NA NA NA
Kumar et al. ³⁵	23	2 cycles	$50\%\Delta \text{SUV}_{\text{max}}$	93	75	86	87.5
Schwarz-Dose et al. ³⁶	69	1 cycle	$\mathbf{45\%}\Delta\mathbf{SUV}_{\mathrm{max}}$	73	63	90	36
Schneider-Kolsky et al. ³⁷	60	4 cycles	$\mathbf{75\%}\Delta\mathbf{SUV}_{\mathrm{max}}$	78	60	90	37
Jung et al. ³⁸	66	4 cycles	$\mathbf{35.5\%} \Delta \mathbf{SUV}_{\mathrm{peak}}$	96.5	89	NA	NA
Keam et al. ³⁹	78	1 cycle	$50\% \Delta SUV_{max}$	85.7	61	95	32.4
Kolesnikov-Gauthier et al. ⁴⁰	63	1 cycle	$15\% \Delta SUV_{max}$	53	84	62	79
Groheux et al. ⁴¹	20	2 cycles	$\textbf{42}\% \ \Delta \textbf{SUV}_{max}$	64	100	83	100
Humbert et al. ⁴²	125	1 cycle	$\textbf{75\%} \ \Delta \textbf{SUV}_{max}$	64	83	79	69
Duch et al. ⁴³	50	4 cycles	$52\% \Delta SUV_{max}$	86	90	NA	NA

(Kostakoglu, Semin Nuc Med 2013)

(Sheikhbahaei, Oncologist 2016: 21:931)

FDG-PET/CT and MRI for Evaluation of Pathologic Response to Neoadjuvant Chemotherapy in Patients With Breast Cancer: A Meta-Analysis of Diagnostic Accuracy Studies

Sara Sheikhbahaei,^a Tyler J. Trahan,^a Jennifer Xiao,^a Mehdi Taghipour,^a Esther Mena,^a Roisin M. Connolly,^b Rathan M. Subramaniam^{a,c,d,e,f}

TOATTIALE TOTAL	SUBRAMA								
Author, year	Index test	Use of Contrast	Scanner (manufacturer)	Time of scan	Patients, no. ^a	Image interpretation	Blind	Response assessment parameter (threshold %, analysis)	pCR, no.
An (// 6]	PET/CT	NR	Biograph Duo or Biograph Truepoint (Siemens)	Baseline-post-NAC	16	1 radiologist	No	ΔSUV (80.6%, ROC)	3
	DCE-MRI DWI-MRI	Yes	3.0 T Magnetom Verio (Siemens)	Baseline-post-NAC	20	1 radiologist	NR	△LD (87.7%, ROC)	3
Pah 201	PET/CT	NR	Gemini TF (Philips)	Baseline-interim NAC (3 or 4 cycles)	21	2 experienced nuclear physicians	NR	Δ SUV (69%, ROC)	7
11 11	MRI	Yes	3.0-T Achieva (Philips)	Baseline-interim NAC (3 or 4 cycles)	21	1 experienced radiologist	NR	Δ LD (38.2%, ROC)	7
Pengel et al., 2014 [18]	FDG-PET/CT	NR	Gemini TF (Philips)	Baseline–interim NAC (3 cycles)	93	Experienced panel	NR	∆SUV (80%, ROC)	43
	MRI	Yes	3.0-T Achieva (Philips)	Baseline-interim NAC (3 cycles)	93	1 experienced radiologist	NR	△LD (75%, ROC)	43
Kim 201	PET/CT	No	Discovery ST scanner (GE Healthcare)	Baseline-post-NAC	38	2 nuclear medicine physicians	Yes	∆SUV (60.1%, ROC)	23
	MRI	Yes	1.5-T Signa (GE Healthcare) or 3-T Achieva (Philips)	Baseline-post-NAC	56	2 radiologists	Yes	Δ LD (50%, ROC)	34
Simo et al.,	FDG-PET	NR	NR	Baseline-post-NAC	30	NR	NR	EORTC (NR)	16
2013 [20]	MRI	NR	NR	Baseline-post-NAC	24	NR	NR	RECIST 1.1 (NR)	12
Tateishi et al., 2012 [13]	PET/CT	NR	Biograph 16 (Siemens) or Aquiduo PCA-7000B (Toshiba)	Baseline-interim NAC (2 cycles)	142	2 nuclear medicine physicians	NR	EORTC (CR vs. PR, SD, PD)	24
	DCE-MRI	Yes	Magnetom Trio, A Tim System (Siemens)	Baseline-interim NAC (2 cycles)	142	1 MR technologist, 1 radiologist	NR	RECIST (CR vs. PR, SD, PD)	24
Par 201	PET/CT	No	Gemini (Philips)	Baseline-post-NAC	34	2 nuclear medicine physicians	Yes	ΔSUV (63.9%, ROC)	7
	DWI-MRI	Yes	1.5 T Signa (GE Medical Systems)	Baseline-post-NAC	34	2 radiologists	Yes	ADC (54.9%, ROC)	7
Che // III	PET/CT	NR	NR	Baseline-post-NAC	41	2 physicians	Yes	ΔSUVpeak (50%)	7
201	MRI	No	NR	Baseline-post-NAC	29	NR	NR	RECIST (CR vs. PR, SD)	7
Dose-Schwarz et al., 2010 [15]	PET	No	ECAT951R/31 ECATExact47 ECATExactHR + (Siemens)	Post-NAC	89	Blind	Yes	SUV (1.5, NR)	16
	MRI	Yes	NR	Baseline-post-NAC	46	Experienced radiologists	NR	Visual interpretation	5
Mukherjee et al., 2010 [21]	PET	No	NR	Baseline-post-NAC	31	NR	NR	Visual interpretation (5-point scale)	5
	MRI	Yes	NR	Baseline-post-NAC	27	NR	NR	△LD (50%, NR)	5

MRI vs FDG-PET to predict pCR

Parameter	Studies, no. (patients, no.)	Sensitivity (95% CI), I ² , %	Specificity (95% CI), I ² , %
All studies			
MRI	10 (492)	0.88 (0.76–0.95), 78	0.55 (0.41–0.68), 49
FDG-PET or FDG-PET/CT	10 (535)	0.71 (0.52–0.85), 87	0.77 (0.58–0.89), 73
FDG-PET/CT	7 (385)	0.82 (0.62–0.92), 86	0.79 (0.52–0.93), 79
FDG-PET alone	3 (150)	0.43 (0.26-0.63), 67	0.73 (0.44-0.91), 48
Intra-NAC assessment			
MRI	3 (256)	0.89 (0.66–0.97), 83	0.42 (0.20-0.68), 69
FDG-PET/CT	3 (256)	0.91 (0.86–0.95), 0	0.69 (0.25–0.93), 87
Post-NAC assessment			
MRI	7 (236)	0.88 (0.71–0.96), 75	0.63 (0.51–0.74), 0
FDG-PET or FDG-PET/CT	7 (279)	0.57 (0.40–0.71), 73	0.80 0.65–0.90), 29
FDG-PET/CT	4 (129)	0.71 (0.42–0.89), 79	0.88 (0.73–0.95), 0

In the intra-NAC setting, PET outperformed MRI in terms of specificity. In the post-NAC setting, MRI showed higher diagnostic accuracy than PET in terms of sensitivity.

Experimental methods to predict pCR

British Journal of Cancer (2015) 113, 1565-1570 | doi: 10.1038/bjc.2015.381

Keywords: Invasive breast cancer; neoadjuvant chemotherapy; pathological complete response; minimal invasive biopsy

Diagnosis of pathological complete response to neoadjuvant chemotherapy in breast cancer by minimal invasive

biopsy techniques

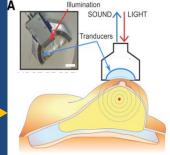
Prospective study

	All (n=116)	Mammo-guide Bx (n=16)
NPV	71.3%	100%
FNR	49.3%	0%

Phase II trial of image-guided biopsy: NRG-BR005

Operable focal or multifocal T1-T3, stage II and IIIA invasive ductal carcinoma (all receptor phenotypes) with clinical complete response by physical exam and radiologic complete response by trimodality imaging after neoadjuvant systemic therapy

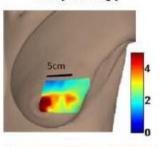
REGISTRATION

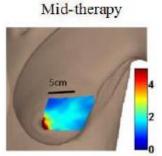

IMAGE-GUIDED CORE BIOPSY

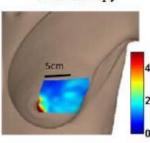
SURGERY (Lumpectomy)

DOSI: Diffuse Optical Spectroscopic Imaging

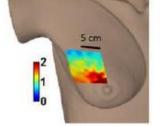
- -High resolution spectroscopy from 650nm-1000nm
- -OxyHb, deoxyHb, water, and lipid have prominent absorption features
- -May differentiate cancer and normal tissues
- -TOI (Tissue Oxygenation Index)=deoxy-Hb X H2O/lipid

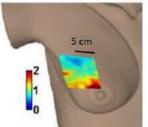

Tumor side Normal side

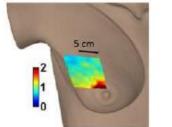

Non-invasive — bed-side imaging

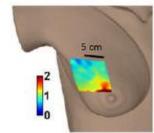


pCR (6691-08)

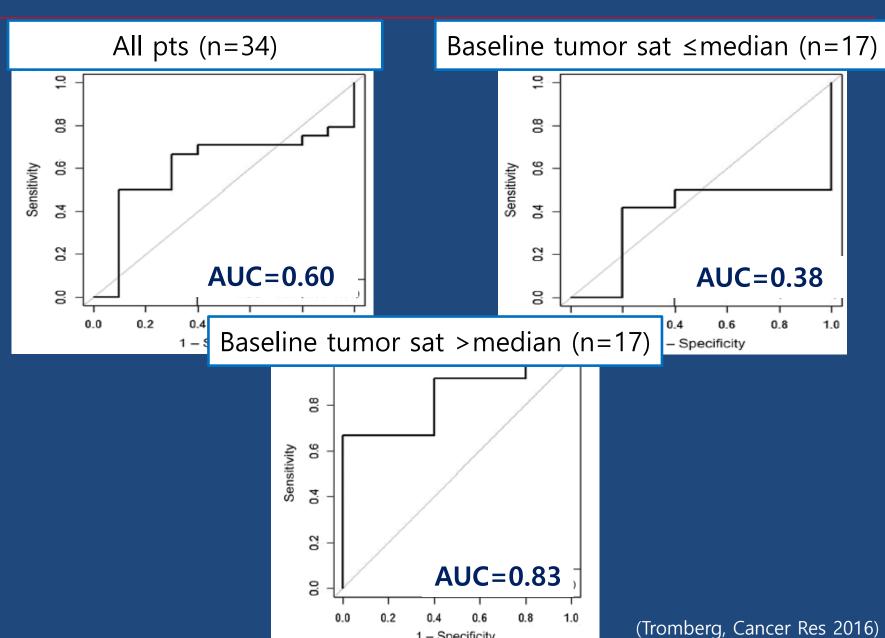



Early-therapy



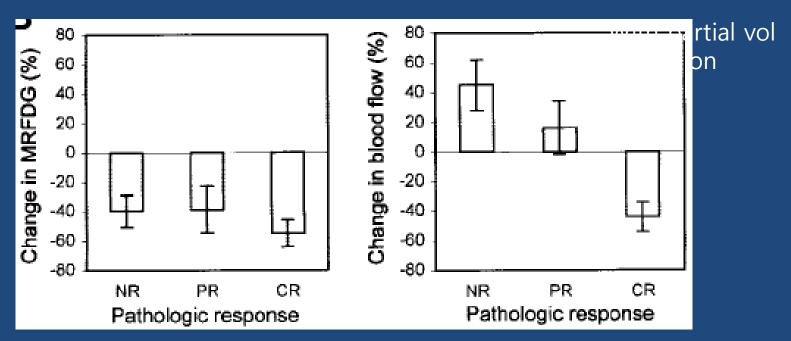


Post-therapy



ROC curves for pCR using %TOI_{TN}

1 - Specificity


Changes in Blood Flow and Metabolism in Locally Advanced Breast Cancer Treated with Neoadjuvant Chemotherapy

David A. Mankoff, MD, PhD¹; Lisa K. Dunnwald, BS¹; Julie R. Gralow, MD²; Georgiana K. Ellis, MD²; Erin K. Schubert, BA¹; Jeffrey Tseng, MD¹; Thomas J. Lawton, MD³; Hannah M. Linden, MD²; and Robert B. Livingston, MD²

MRFDG and blood flow by pathologic response

Metabolism imaging: ¹⁸F-FDG

Blood flow imaging: tracer (15O-H2O) was administered

N = 34

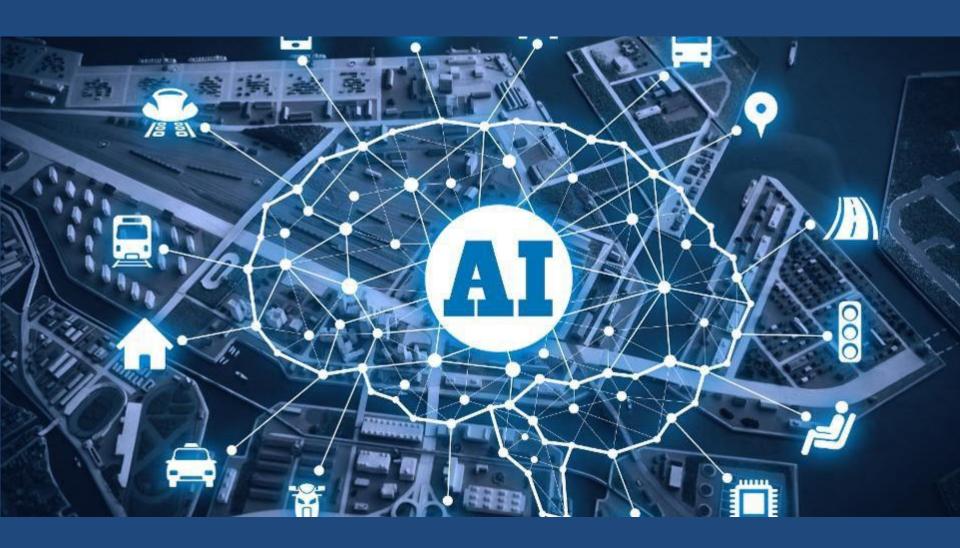
OXFORD

Yes

231 (24.2)

199 (86.1)

32 (13.9)


doi: 10.1093/jnci/djy018 First published online April 12, 2018 Meta-Analysis

Circulating Tumor Cells in Breast Cancer Patients Treated by

Neoadjuvant Chemotherapy: A Meta-analysis

CTC(≥1) before surgery does not predict pCR

	N patients (%)	0 CTC N (%)	≥1 CTC N (%)	p value			
CTC count before ned	padjuvant chemother	ару					
pCR	1557 (100)		_	p=0.08			
No		CTC	311 (26.3)			Before	Before
Yes	befo	re NAC	81 (21.7)			NAC	surgery
pCR (T4d excluded)	1359 (100)			p=0.01			
No	1060 (78.0)	803 (75.8)	257 (24.2)		Sensitivity	82.6%	86.1%
Yes	299 (22.0)	247 (82.6)	52 (17.4)		Specificity	24.2%	14.8%
CTC count before sur	gery				PPV	23.5%	24.4%
pCR	1141 (100)		_	p=0.45	PPV	25.5%	24.470
No		CTC	132 (15.7)		NPV	83.2%	76.9%
Yes	before	e surger	Y 41 (13.7)				
pCR (T4d excluded)	954 (100)			p=0.83			
No	723 (75.8)	616 (85.2)	107 (14.8)				

AMIA Annu Symp Proc. 2011; 2011: 868-877.

Published online 2011 Oct 22.

PMCID: PMC3243164

PMID: 22195145

Early Prediction of the Response of Breast Tumors to Neoadjuvant Chemotherapy using Quantitative MRI and Machine Learning

Subramani Mani, MBBS, PhD, Yukun Chen, MS, Lori R. Arlinghaus, PhD, Xia Li, PhD, A. Bapsi Chakravarthy, MD, Sandeep R. Bhave, BS, E. Brian Welch, PhD, Mia A. Levy, MD, PhD, and Thomas E. Yankeelov, PhD

Temporal relationship of clinical and imaging parameters

List of clinical and imaging variables

Delta tumor volume

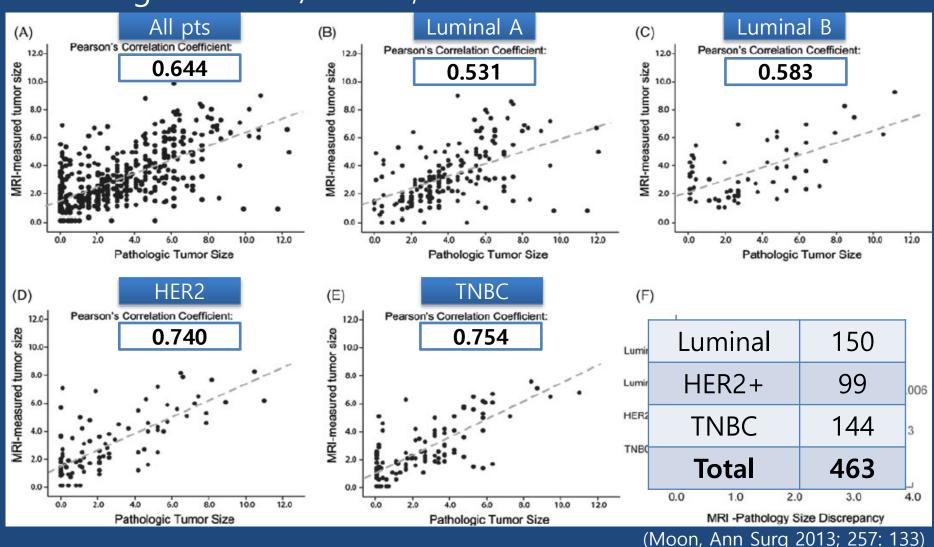
			Clinical variable	Description	<mark>lmaging</mark> variable	Key Term	Description	
		,	Age	Age at the time of diagnosis	Delta ADC	Delta	t1, t2 difference	
DCE MF	S		ER+	Estrogen receptor	Delta K ^{trans} FXL	K ^{trans}	Pharmacokinetic transfer constant	
DCE IVIE		~ I	~	PR+	Progesterone receptor	Delta K ^{trans} FXLvp	FXL	Fast exchange limit
	r g e		HER2+	Human epidermal growth factor receptor	Delta K ^{irans} FXR	FXR	Fast exchange regime	
Neoadjuvant Therapy Cycle 1	Neoadjuvant Therapy Cycle(s) Additional	Ļ	Clinical Grade	Pretreatment clinical grade	Delta ve FXL	V p	Blood plasma volume fraction	
<u> </u>	y		Proliferative rate		Delta v _e FXLvp	Ve	Extravascular extracellular volume fraction	
Clinical	Timeline t3		Pre-treatment nodal status	Pathologically confirmed by fine needle aspiration or sentinel node evaluation	Delta v _e FXR	ti	Intra cellular water lifetime of water molecule	
Variables Imaging Variables	Pathologic response (gold sta	andard)	Clinical-T	Pretreatment clinical size based on clinical findings judged most accurate for that case (physical exam, ultrasound, mammogram, conventional MRI)	Delta V _p FXL			
			Clinical-N	Pretreatment nodal stage based on pathologically confirmed by fine needle aspiration of node or sentinel evaluation	Delta t _i FXR			
			Pre-treatment clinical stage	Staging of the breast cancer prior to initiation of systemic chemotherapy	K ^{trans} t₁ FXL			
			Pre-treatment physical exam	Longest diameter by physical exam (cm)	K ^{trans} t₁ FXLvp			
			Pre-treatment longest diameter (ultra sound)	Longest dimension (cm) Clinical judgment is used to determine the modality most accurate for that case (physical exam, ultrasound, mammogram, conventional MRI)	K ^{trans} t ₁ FXR			
				1	Dalta tumas	1		

Machine learning finds the best predictive model

Imaging + Clinical Data (25 variables)	Acc	uracy	Precision		Recall/S	ensitivity	Speci	ificity	A	UC
Algorithm	No-FS	GS-10	No-FS	GS-10	No-FS	GS-10	No-FS	GS-10	No-FS	GS-10
Naïve Bayes	0.55	0.55	1.00	0.60	0.18	0.55	1.00	0.56	0.70	0.69
CART	0.45	0.70	0.50	0.73	0.55	0.73	0.33	0.67	0.42	0.68
SVM	0.70	0.65	0.78	0.67	0.64	0.73	0.78	0.56	0.78	0.78
RF	0.70	0.65	0.78	0.70	0.64	0.64	0.78	0.67	0.79	0.71
LR	0.70	0.75	0.78	0.80	0.64	0.73	0.78	0.78	0.69	0.81
Bayesian LR	0.90	0.75	0.91	0.80	0.91	0.73	0.89	0.78	0.96	0.82

Why is prediction of pCR so hard?

Factors affecting on MRI accuracy


- ✓ Subtype may affect the predictability
- -Luminal type: hard to predict pCR d/t low pCR rate
- ✓ Regimens may affect
- -Antivascular effects of taxane may underestimate residual tumor size d/t less enhancement on contrast-enhanced MRI
- ✓ Presence of DCIS
- ✓ Responding process may be heterogeneous

Take Home Messages

- If we have accurate methods to predict pCR before surgery, we might omit breast surgery
- However, currently we don't have a golden method
- DCE-MRI is one of better imagings so far in this regard
- I expect that preoperative pCR-predicting method will be developed by incorporating new functional/metabolic imagings and AI technology

Subtype affects accuracy of prediction of pCR

Accuracy of MRI in predicting residual tumor extent → high in TNBC/HER2+, low in HR+

